

Presentation Overview

- Purpose
- Data Sources
- Structure Extraction
 - Filtering
- Tree Extraction
 - Filtering
- GIS Linkage
- Future Work

Project Purpose

- Catastrophic Fires in WUI
 - ~9,000 homes destroyed 1985-1994 (NFPA)
- WUI Fire Behavior
- Few Physics-Based Models WUI Fires
- Cooperative Project
 - BFRL & CDA Tribe
 - CDA Tribe Provides Model Inputs
 - Structure Information
 - Tree Stem Locations (Crown Width, Height, Height to Live Crown, Bulk Crown Density)
 - Other Vegetation
 - Fire Barriers

Light Detection and Ranging (LiDAR)

What is LIDAR?

-Remotely Sensed Elevation Data

LASER-SCANNING

Why Would You Want LIDAR?

- -High Accuracy (15cm ~ 6in)
- -High Spatial Resolution (1-2m)
- -Can be Collected in Vegetated Areas
- -Cost Effective

Multiple Return

Structure Footprint Extraction Goals & Objectives

- 1) Extract Footprints WFDS Testing
 - Entire CDA Tribe Reservation
 - Database 11,000 Footprints
 - Building Materials
 - Height Statistics
- 2) Compare Methodologies
 - Feasibility
 - Identify/Develop Robust Methodology

Structure Footprint Extraction

- 4 Methods Examined^{1,2}
 - Modified
- 2 LiDAR Height Data Height Directly
 - Derivative of Height (Texture)
- 2 Objected Oriented Image Classification
 - LiDAR Intensity Data
 - Multispectral Data
- Height and Area Thresholds
- Normalized Digital Surface Model
- Squaring Algorithm
 - Feature Analyst

- 1. Hewett (2005); Mass (1999); Rottensteiner & Briese (2005); Ibrahim (2005).
- 2. Details of methods: http://gis.cdatribe-nsn.gov/projects/lidarbuilding.aspx

Accuracy Assessment Methodology as described by Song & Haithcoat (2005) 0.6 0.9 ∎Kilometers

Building Extraction Comparisons Study Area Worley, ID

Study Area (2.5KM X 2.5KM)
Building Footprints (426)

Accuracy Assessment Completeness Measures

METHOD	Texture	Height	Multispectral	LiDAR Intensity
MEASURE	Extraction	Extraction	Extraction	Extraction
Detection Rate (%)	69.7	73.5	72.3	66.7
Correctness (%)	16.9	19.0	28.0	12.4
Average Matched Overlay (%)	80.6	83.6	79.0	79.5
Average Area Omission Error (%)	19.5	16.4	21.0	20.1
Average Area Commission Error (%)	19.2	19.3	11.3	13.1

Accuracy Assessment Methodology as described by Song & Haithcoat (2005)

Accuracy Assessment Geometric Accuracy

METHOD	Texture	Height	Multispectral	LiDAR Intensity
MEASURE	Extraction	Extraction	Extraction	Extraction
Average Root Mean Square Error (m)	2.02	1.90	2.03	2.40
Average Corner Difference (#)	1.4	1.59	1.51	2.01

RMSE

$$\frac{\sum \left(\sqrt{\frac{\sum (d^2)}{\# \text{ corners correct building}}}\right)}{\text{total number correct buildings}}$$

Corner Difference

Accuracy Assessment Shape Similarity

METHOD MEASURE	Texture Extraction	Height Extraction	Multispectral Extraction	LiDAR Intensity
Average Area Difference (%)	19.7	22.0	19.4	20.1
Average Perimeter Difference (%)	11.1	14.2	12.6	13.0

Perimeter Difference

Area Difference

Initial Building Filter

Plane Fitting Filter

Move to Next Point

Repeat Process

Plane Fitting Algorithm Initial Results

Tree Stem Location Extraction

- 2 Methodologies Examined
 - LAS Processor (National Center for Landscape Fire Analysis (Eric Rowell))
 - Point Data Directly
 - Conifer Species
 - Modified By CDA Tribe
 - TreeVaw (Sorin C. Popescu (2004))
 - Interpolated Point Data
 - Surface Height Model
 - Adjust Crown Width & Height Relationship
 - Forested Environments

Tree Extraction Accuracy Assessments

- Small Park (~1/10KM)
- Even Aged Tree Stand
 - 60 Trees
 - 3 Deciduous
 - 57 Conifers
 - 15 Pole Features
 - 6 Telephone Poles
 - 4 Basketball Hoops
 - 4 Light Poles
 - 1 Totem Pole
 - 4 Shrubs
 - 2 Small Structures
 - 4 Playground Equipment
 - Metal Fence

Preliminary Results TreeVaw

Method	Field Survey	Tree Vaw
Number of Trees	60	77
Coniferous	57	~55
Deciduous	3	2
Pole Features	14	7
Shrubs	4	2
Playground Equipment	4	2
Canopy	N/A	~9

- Identify ~ 96%
 Conifer
- Identify ~ 66%
 Deciduous
- ~29% of Features
 Misidentified

Preliminary Results LAS Processor

- 2 PointsTelephonePoles
- Highest Point Tree
- Modify LAS Processor

Other Data Inputs

- Shrubs
 - Canopy Cover &Height & Multispectral
- Height to Live Crown
 - Tree Height & Height to Live Crown
- Crown Bulk Density
- Fire Barriers (Roads & Dirt Patches)

Relationship Between Tree Height & Height to Live Crown

GIS Linkage (Input File Creator)

- Selected Locations
- 2GB Limit
- Can Not Write
 Output
 Information

Preliminary Conclusions

- Building Extraction
 - Feasible
 - Remove Noise
- Tree Extraction
 - Feasible
 - Open, Even-Aged Stand
 - WUI Environment (?)
 - Uneven aged stand (?)
 - Smaller Trees (?)

Future Work

- Point Filtering Algorithms
 - Refinement
 - Increase Speed
- Crown Bulk Density & Height to Live Crown
- Ground Surveys
- Complete GIS Linkage

Acknowledgements

- Eric Rowell
 - National Center for Landscape Fire Analysis
- NIST/BFRL
- CDA Tribe
 - Jeremy Adams, Noel Sanyal, Heather Fuller,
 James Twoteeth, Bernie Jackson, Perry Kitt

Literature Cited

- Anderson, H.E., S.E., Reutebuch, and R.J. McGaughey. <u>Forest measurement and monitoring using high-resolution airborne LIDAR</u>. Oregon State University American Society of Photogrammetry and Remote Sensing (ASPRS) Student Chapter meeting, June 2, 2006, Corvallis, OR.
- Sulaga Ibrahim. <u>Feature Extraction and 3D City Modeling Using Airborne LIDAR and High-Resolution Digital Orthophotos.</u> GIS Master Thesis. University of Texas at Dallas. 2005.
- Haithcoat, T., and W. Song, J. Hipple. <u>Automated Building Extraction and Reconstruction from LIDAR Data.</u> R&D Program for NASA/ICREST Studies Project Report. September, 2001.
- Hewett, M. <u>Automating Feature Extraction with the ArcGIS Spatial Analyst Extension.</u> 2005 ESRI International User Conference Proceedings.
- Mass, G-H. <u>The Potential of Height Texture Measures for the Segmentation of Airborne</u>
 <u>Laserscanner Data.</u> Presented at the 4th *Airborne Remote Sensing Conference and Exhibition*,
 Ottawa, Ontario, Canada, 21-24 June 1999.
- Popescu, P.C, and A.U. Kini. <u>TREEVAW: A Versatile Tool for Analyzing Forest Canopy LIDAR DATA A Preview with an Eye Towards Future.</u> Presented at the *ASPRS Images to Decision:* Remote Sensing Foundation for GIS Applications, Kansas City, Missouri, 12-16 September 2004.
- Rottensteiner, F. and C. Briese. <u>A New Method for Building Extraction in Urban Areas from High-Resolution LIDAR Data.</u> IAPRSIS, Vol. XXXIV/3A, 2002, Graz, Austria, pp. 310-317
- Song, W., and T.L. Haithcoat. <u>Development of Comprehensive Accuracy Assessment Indexes for Building Footprint Extraction.</u> Geoscience and Remote Sensing, IEEE Transactions on. 43:2. February, 2005.